Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163237

RESUMO

Glutaredoxin (Grx) is an important oxidoreductase to maintain the redox homoeostasis of cells. In our previous study, cold-adapted Grx from Psychrobacter sp. ANT206 (PsGrx) has been characterized. Here, we constructed an in-frame deletion mutant of psgrx (Δpsgrx). Mutant Δpsgrx was more sensitive to low temperature, demonstrating that psgrx was conducive to the growth of ANT206. Mutant Δpsgrx also had more malondialdehyde (MDA) and protein carbonylation content, suggesting that PsGrx could play a part in the regulation of tolerance against low temperature. A yeast two-hybrid system was adopted to screen interacting proteins of 26 components. Furthermore, two target proteins, glutathione reductase (GR) and alkyl hydroperoxide reductase subunit C (AhpC), were regulated by PsGrx under low temperature, and the interactions were confirmed via bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). Moreover, PsGrx could enhance GR activity. trxR expression in Δpsgrx, Δahpc, and ANT206 were illustrated 3.7, 2.4, and 10-fold more than mutant Δpsgrx Δahpc, indicating that PsGrx might increase the expression of trxR by interacting with AhpC. In conclusion, PsGrx may participate in glutathione metabolism and ROS-scavenging by regulating GR and AhpC to protect the growth of ANT206. These findings preliminarily suggest the role of PsGrx in the regulation of oxidative stress, which could improve the low-temperature tolerance of ANT206.


Assuntos
Glutarredoxinas/metabolismo , Psychrobacter/genética , Sequência de Aminoácidos , Antioxidantes/metabolismo , Temperatura Baixa , Glutarredoxinas/fisiologia , Glutationa Redutase/metabolismo , Glutationa Redutase/fisiologia , Homeostase , Cinética , Modelos Moleculares , Oxirredução , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Peroxirredoxinas/fisiologia , Psychrobacter/metabolismo , Temperatura
2.
Plant J ; 103(3): 1140-1154, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32365245

RESUMO

Thiol-based redox-regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin-dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione-mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo-lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH ) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild-type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.


Assuntos
Cloroplastos/metabolismo , Glutationa Redutase/metabolismo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Bryopsida/enzimologia , Bryopsida/metabolismo , Bryopsida/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cloroplastos/enzimologia , Cloroplastos/fisiologia , Técnicas de Inativação de Genes , Glutationa/metabolismo , Glutationa Redutase/fisiologia , Oxirredução
3.
J Neurochem ; 144(1): 93-104, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105080

RESUMO

Glutathione (GSH) and GSH-related enzymes constitute the most important defense system that protects cells from free radical, radiotherapy, and chemotherapy attacks. In this study, we aim to explore the potential role and regulatory mechanism of the GSH redox cycle in drug resistance in glioblastoma multiforme (GBM) cells. We found that temozolomide (TMZ)-resistant glioma cells displayed lower levels of endogenous reactive oxygen species and higher levels of total antioxidant capacity and GSH than sensitive cells. Moreover, the expression of glutathione reductase (GSR), the key enzyme of the GSH redox cycle, was higher in TMZ-resistant cells than in sensitive cells. Furthermore, silencing GSR in drug-resistant cells improved the sensitivity of cells to TMZ or cisplatin. Conversely, the over-expression of GSR in sensitive cells resulted in resistance to chemotherapy. In addition, the GSR enzyme partially prevented the oxidative stress caused by pro-oxidant L-buthionine -sulfoximine. The modulation of redox state by GSH or L-buthionine -sulfoximine regulated GSR-mediated drug resistance, suggesting that the action of GSR in drug resistance is associated with the modulation of redox homeostasis. Intriguingly, a trend toward shorter progress-free survival was observed among GBM patients with high GSR expression. These results indicated that GSR is involved in mediating drug resistance and is a potential target for improving GBM treatment.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Glutationa Redutase/fisiologia , Proteínas de Neoplasias/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Glutationa/metabolismo , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/biossíntese , Glutationa Redutase/genética , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Temozolomida , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Eur J Pharmacol ; 765: 384-93, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26341012

RESUMO

Plumbagin is a secondary metabolite that was first identified in the Plumbago genus of plants. It is a naphthoquinone compound with anti-atherosclerosis, anticancer, anti-inflammatory, antimicrobial, contraceptive, cardiotonic, immunosuppressive, and neuroprotective activities. However, the mechanisms of plumbagin's activities are largely unknown. In this study, we examined the effect of plumbagin on HepG2 hepatocellular carcinoma cells as well as LLC lung cancer cells, SiHa cervical carcinoma cells. Plumbagin significantly decreased HepG2 cell viability in a dose-dependent manner. Additionally, treatment with plumbagin significantly increased the Bax/Bcl-2 ratio and caspase-3/7 activity. Using the similarity ensemble approach (SEA)-a state-of-the-art cheminformatic technique-we identified two previously unknown cellular targets of plumbagin: thioredoxin reductase (TrxR) and glutathione reductase (GR). This was then confirmed using protein- and cell-based assays. We found that plumbagin was directly reduced by TrxR, and that this reduction was inhibited by the TrxR inhibitor, sodium aurothiomalate (ATM). Plumbagin also decreased the activity of GR. Plumbagin, and the GR inhibitor sodium arsenite all increased intracellular reactive oxygen species (ROS) levels and this increase was significantly attenuated by pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) in HepG2 cells. Plumbagin increased TrxR-1 and heme oxygenase (HO)-1 expression and pretreatment with NAC significantly attenuated the plumbagin-induced increase of TrxR-1 and HO-1 expression in HepG2 cells, LLC cells and SiHa cells. Pretreatment with NAC significantly prevented the plumbagin-induced decrease in cell viability in these cell types. In conclusion, plumbagin exerted its anticancer effect by directly interacting with TrxR and GR, and thus increasing intracellular ROS levels.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/fisiologia , Glutationa Redutase/fisiologia , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/fisiologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Naftoquinonas/química
5.
J Clin Invest ; 125(4): 1679-91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25798618

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) are a common precursor of both adipocytes and osteoblasts. While it is appreciated that PPARγ regulates the balance between adipogenesis and osteogenesis, the roles of additional regulators of this process remain controversial. Here, we show that MSCs isolated from mice lacking S-nitrosoglutathione reductase, a denitrosylase that regulates protein S-nitrosylation, exhibited decreased adipogenesis and increased osteoblastogenesis compared with WT MSCs. Consistent with this cellular phenotype, S-nitrosoglutathione reductase-deficient mice were smaller, with reduced fat mass and increased bone formation that was accompanied by elevated bone resorption. WT and S-nitrosoglutathione reductase-deficient MSCs exhibited equivalent PPARγ expression; however, S-nitrosylation of PPARγ was elevated in S-nitrosoglutathione reductase-deficient MSCs, diminishing binding to its downstream target fatty acid-binding protein 4 (FABP4). We further identified Cys 139 of PPARγ as an S-nitrosylation site and demonstrated that S-nitrosylation of PPARγ inhibits its transcriptional activity, suggesting a feedback regulation of PPARγ transcriptional activity by NO-mediated S-nitrosylation. Together, these results reveal that S-nitrosoglutathione reductase-dependent modification of PPARγ alters the balance between adipocyte and osteoblast differentiation and provides checkpoint regulation of the lineage bifurcation of these 2 lineages. Moreover, these findings provide pathophysiological and therapeutic insights regarding MSC participation in adipogenesis and osteogenesis.


Assuntos
Adipogenia/fisiologia , Glutationa Redutase/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , PPAR gama/fisiologia , Processamento de Proteína Pós-Traducional , Adipócitos/metabolismo , Adiponectina/biossíntese , Adiponectina/genética , Álcool Desidrogenase , Sequência de Aminoácidos , Animais , Remodelação Óssea/genética , Reabsorção Óssea/genética , Linhagem da Célula , Proteínas de Ligação a Ácido Graxo/biossíntese , Proteínas de Ligação a Ácido Graxo/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento/genética , Glutationa Redutase/deficiência , Glutationa Redutase/genética , Células HEK293 , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Nitrosação , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fenótipo , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia , Transcrição Gênica
6.
Free Radic Biol Med ; 61: 320-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23623936

RESUMO

Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, a major cellular antioxidant. We have recently shown that Gsr is essential for host defense against the gram-negative bacteria Escherichia coli in a mouse model of sepsis. Although we have demonstrated that Gsr is required for sustaining the oxidative burst and the development of neutrophil extracellular traps, the role of Gsr in other phagocytic functions remains unclear. It is also unclear whether Gsr-deficient mice exhibit host defense defects against gram-positive bacteria. In this study, we characterized the effects of Gsr deficiency on the innate immune responses to a gram-positive bacterium, group B Streptococcus, and to the gram-negative bacterial cell wall component lipopolysaccharide (LPS). We found that, like E. coli, group B Streptococcus resulted in a substantially more robust cytokine response and a markedly higher morbidity and mortality in Gsr-deficient mice than in wild-type mice. The increased morbidity and mortality were associated with greater bacterial burden in the Gsr-deficient mice. Interestingly, Gsr-deficient mice did not exhibit a greater sensitivity to LPS than did wild-type mice. Analysis of the neutrophils of Gsr-deficient mice revealed impaired phagocytosis. In response to thioglycollate stimulation, Gsr-deficient mice mobilized far fewer phagocytes, including neutrophils, macrophages, and eosinophils, into their peritoneal cavities than did wild-type mice. The defective phagocyte mobilization is associated with profound oxidation and aggregation of ascitic proteins, particularly albumin. Our results indicate that the oxidative defense mechanism mediated by Gsr is required for an effective innate immune response against bacteria, probably by preventing phagocyte dysfunction due to oxidative damage.


Assuntos
Infecções Bacterianas/imunologia , Glutationa Redutase/fisiologia , Sequência de Aminoácidos , Animais , Movimento Celular , Endotoxinas/toxicidade , Glutationa/metabolismo , Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Dados de Sequência Molecular , Fagocitose , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/mortalidade , Streptococcus agalactiae
7.
Cardiovasc Res ; 98(1): 47-55, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23341578

RESUMO

AIMS: We have previously shown that exercise leads to sustainable cardioprotection through a mechanism involving improved glutathione replenishment. This study was conducted to determine if redox-dependent modifications in glutathione reductase (GR) were involved in exercise cardioprotection. Furthermore, we sought to determine if reactive oxygen species generated by NADPH oxidase and/or mitochondria during exercise were triggering events for GR modulations. METHODS AND RESULTS: Rats were exercised for 10 consecutive days, after which isolated hearts were exposed to ischaemia/reperfusion (25 min/120 min). Exercise protected against infarction and arrhythmia, and preserved coronary flow. The GR inhibitor BCNU abolished the beneficial effects. GR activity was increased following exercise in a redox-dependent manner, with no change in GR protein levels. Because fluorescent labelling of GR protein thiols showed lower amounts of reduced thiols after exercise, we sought to determine the source of intracellular reactive oxygen species that may be activating GR. Subsets of animals were exercised immediately after treatment with either NADPH-oxidase inhibitors apocynin or Vas2870, or with mitoTEMPO or Bendavia, which reduce mitochondrial reactive oxygen species levels. The cardioprotective effects of exercise were abolished if animals exercised in the presence of NADPH oxidase inhibitors, in clear contrast to the mitochondrial reagents. These changes correlated with thiol-dependent modifications of GR. CONCLUSION: Adaptive cardioprotective signalling is triggered by reactive oxygen species from NADPH oxidase, and leads to improved glutathione replenishment through redox-dependent modifications in GR.


Assuntos
Glutationa Redutase/fisiologia , Mitocôndrias/fisiologia , NADPH Oxidases/fisiologia , Condicionamento Físico Animal , Animais , Feminino , Glutationa/metabolismo , Traumatismo por Reperfusão Miocárdica/etiologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
8.
Biochim Biophys Acta ; 1817(11): 1979-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22709908

RESUMO

Chloroplast glutathione reductase (GR) plays an important role in protecting photosynthesis against oxidative stress. We used transgenic tobacco (Nicotiana tabacum) plants with severely decreased GR activities by using a gene encoding tobacco chloroplast GR for the RNAi construct to investigate the possible mechanisms of chloroplast GR in protecting photosynthesis against chilling stress. Transgenic plants were highly sensitive to chilling stress and accumulated high levels of H2O2 in chloroplasts. Spectroscopic analysis and electron transport measurements show that PSII activity was significantly reduced in transgenic plants. Flash-induced fluorescence relaxation and thermoluminescence measurements demonstrate that there was a slow electron transfer between Q(A) and Q(B) and decreased redox potential of Q(B) in transgenic plants, whereas the donor side function of PSII was not affected. Immunoblot and blue native gel analyses illustrate that PSII protein accumulation was decreased greatly in transgenic plants. Our results suggest that chloroplast GR plays an important role in protecting PSII function by maintaining the electron transport in PSII acceptor side and stabilizing PSII complexes under chilling stress. Our results also suggest that the recycling of ascorbate from dehydroascorbate in the ascorbate-glutathione cycle in the chloroplast plays an essential role in protecting PSII against chilling stress.


Assuntos
Cloroplastos/metabolismo , Glutationa Redutase/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Ácido Ascórbico/metabolismo , Temperatura Baixa , Transporte de Elétrons , Glutationa Redutase/metabolismo , Fenótipo , Complexo de Proteína do Fotossistema II/análise , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , /genética
9.
An Acad Bras Cienc ; 84(1): 175-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22441607

RESUMO

The celiac disease is an autoimmune gastrointestinal disorder caused by gluten from wheat, rye or barley. In genetically predisposed persons, gluten induces the immune-mediated inflammation of small intestinal mucosa. Histological lesions include intraepithelial lymphocytosis, crypt hypertrophy and villous atrophy, resulting in malabsorption of micro- and macronutrients. The only treatment for celiac patients is a permanent gluten-free diet (GFD). Reactive oxygen species (ROS) and oxidative stress are strongly associated with the celiac disease. Glutathione (GSH) is a main detoxifier of endogenous and exogenous ROS in the intestine. In order to explain the role of glutathione redox cycle in celiac patients, we examined the activities of GSH-related antioxidant (AO) enzymes glutathione peroxidase (GPx) and glutathione reductase (GR), as well as the concentration of GSH in small intestinal biopsies and peripheral blood of children affected by the celiac disease. The concentration of lipid hydroperoxides (LOOH) as markers of oxidative damage was measured in the same samples. The results clearly demonstrate a significant malfunction of GSH redox cycle with a concomitant decrease in the capacity to regenerate GSH and detoxify LOOH in celiac patients, even after several years of GFD. The oral administration of GSH and a diet rich in natural antioxidants, as well as appropriate dietary supplements, could be of great benefit to the patients.


Assuntos
Doença Celíaca/enzimologia , Glutationa Peroxidase/fisiologia , Glutationa Redutase/fisiologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Adolescente , Estudos de Casos e Controles , Doença Celíaca/sangue , Criança , Pré-Escolar , Feminino , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Lactente , Peróxidos Lipídicos/sangue , Masculino , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
10.
J Immunol ; 188(5): 2316-27, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22279102

RESUMO

Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in the bactericidal function of phagocytes. Because Gsr has been implicated in the oxidative burst in human neutrophils and is abundantly expressed in the lymphoid system, we hypothesized that Gsr-deficient mice would exhibit marked defects during the immune response against bacterial challenge. We report in this study that Gsr-null mice exhibited enhanced susceptibility to Escherichia coli challenge, indicated by dramatically increased bacterial burden, cytokine storm, striking histological abnormalities, and substantially elevated mortality. Additionally, Gsr-null mice exhibited elevated sensitivity to Staphylococcus aureus. Examination of the bactericidal functions of the neutrophils from Gsr-deficient mice in vitro revealed impaired phagocytosis and defective bacterial killing activities. Although Gsr catalyzes the regeneration of glutathione, a major cellular antioxidant, Gsr-deficient neutrophils paradoxically produced far less reactive oxygen species upon activation both ex vivo and in vivo. Unlike wild-type neutrophils that exhibited a sustained oxidative burst upon stimulation with phorbol ester and fMLP, Gsr-deficient neutrophils displayed a very transient oxidative burst that abruptly ceased shortly after stimulation. Likewise, Gsr-deficient neutrophils also exhibited an attenuated oxidative burst upon encountering E. coli. Biochemical analysis revealed that the hexose monophosphate shunt was compromised in Gsr-deficient neutrophils. Moreover, Gsr-deficient neutrophils displayed a marked impairment in the formation of neutrophil extracellular traps, a bactericidal mechanism that operates after neutrophil death. Thus, Gsr-mediated redox regulation is crucial for bacterial clearance during host defense against massive bacterial challenge.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Espaço Extracelular/imunologia , Glutationa Redutase/fisiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Estresse Oxidativo/imunologia , Fagocitose/imunologia , Infecções Estafilocócicas/prevenção & controle , Animais , Escherichia coli/imunologia , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/imunologia , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Glutationa Redutase/deficiência , Glutationa Redutase/genética , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Neutrófilos/microbiologia , Estresse Oxidativo/genética , Fagocitose/genética , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia
11.
J Gerontol A Biol Sci Med Sci ; 66(4): 376-84, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21081477

RESUMO

The present study investigated the changes in several erythrocyte oxidative stress biomarkers in hypoxic elderly individuals to analyze the deleterious effects of low oxyhemoglobin saturation in an elderly population. We collected blood samples from one normoxic middle-aged group and two groups composed of individuals older than 75 years of age: one normoxic group and one hypoxic group. Aging appeared to provoke a defective erythrocyte antioxidant defense associated with increased oxidative damage in the elderly population. Acute hypoxia activated an insufficient antioxidant defense response as suggested by the oxidative damage observed. The oxidative imbalance presented in older participants and increased in hypoxia participants had a direct effect on glyceraldehyde-3-phosphate dehydrogenase cell distribution. Oxidative stress levels altered Band 3 protein and mediated caspase-3 activation in erythrocyte from the aged group although it was not extended to hypoxic individuals. Therefore, aged participants appeared to activate an insufficient antioxidant response against hypoxia-related oxidative stress.


Assuntos
Adaptação Fisiológica , Eritrócitos/fisiologia , Gliceraldeído-3-Fosfato Desidrogenase (NADP+)(Fosforiladora)/fisiologia , Hipóxia/fisiopatologia , Estresse Oxidativo , Idoso , Idoso de 80 Anos ou mais , Proteína 1 de Troca de Ânion do Eritrócito/fisiologia , Antioxidantes/fisiologia , Caspase 3/fisiologia , Catalase/fisiologia , Eritrócitos/enzimologia , Feminino , Glutationa Redutase/fisiologia , Humanos , Hipóxia/enzimologia , Masculino , Superóxido Dismutase/fisiologia
12.
Inhal Toxicol ; 22(7): 535-42, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20384467

RESUMO

Previous studies indicated that oxidative stress was involved in phosgene-induced acute lung injury (ALI) and many antioxidants had been used to prevent ALI. N-acetylcysteine (NAC) had been used to protect ALI induced by various types of oxidative stress. Considering the limited information of NAC on phosgene-induced ALI, the purpose of this study was to elucidate the molecular mechanisms of phosgene-induced ALI and the protective effects of NAC. This study discovered that intraperitoneal administration of NAC significantly alleviated phosgene-induced pulmonary edema, as confirmed by decreased lung wet to dry weight ratio and oxidative stress markers. The content of l-gamma-glutamyl-l-cysteinyl-glycine (glutathione; GSH) and the ratio of the reduced and disulfide forms (GSH/GSSG), significant indicators of the antioxidative ability, were apparently inhibited by phosgene exposure. However, both indicators could be reversed by NAC administration, indicating that dysregulation of redox status of glutathione might be the cause of phosgene-induced ALI. The nuclear factor (NF)-E2-related factor 2 (Nrf2), which has been proven to up-regulate the expression of glutathione reductase (GR), was obviously decreased by phosgene exposure. However, NAC administration elevated Nrf2 expression significantly. In conclusion, these data provided the first evidences showing that it was the transcriptional factor Nrf2 that connected phosgene-induced ALI with GSH metabolism. NAC protected against oxidative stress through acting on this newly disclosed Nrf2/GR/GSH pathway, by which NAC elevated the biosynthesis of protective GSH to repair and reconstitute the defense system destroyed by phosgene.


Assuntos
Acetilcisteína/uso terapêutico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Fator 2 Relacionado a NF-E2/biossíntese , Fosgênio/toxicidade , Regulação para Cima/fisiologia , Acetilcisteína/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Glutationa/antagonistas & inibidores , Glutationa/fisiologia , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/fisiologia , Masculino , Fator 2 Relacionado a NF-E2/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
13.
Biochimie ; 92(8): 927-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20302905

RESUMO

The cellular roles of glutathione reductase (GR) in the reactive oxygen species (ROS)-induced apoptosis were studied using the HepG2 cells transfected with GR. The overexpression of GR caused a marked enhancement in reduced and oxidized glutathione (GSH/GSSG) ratio, and significantly decreased ROS levels in the stable transfectants. Hydrogen peroxide (H(2)O(2)), under the optimal condition for apoptosis, significantly decreased cellular viability and total GSH content, and rather increased ROS level, apoptotic percentage and caspase-3 activity in the mock-transfected cells. However, hydrogen peroxide could not largely generate these apoptotic changes in cellular viability, ROS level, apoptotic percentage, caspase-3 activity and total GSH content in the cells overexpressing GR. Taken together, GR may play a protective role against oxidative stress.


Assuntos
Apoptose/fisiologia , Carcinoma Hepatocelular/metabolismo , Glutationa Redutase/fisiologia , Neoplasias Hepáticas/metabolismo , Estresse Oxidativo , Sequência de Bases , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Primers do DNA , Humanos , Neoplasias Hepáticas/patologia
14.
Biomed Khim ; 55(4): 365-79, 2009.
Artigo em Russo | MEDLINE | ID: mdl-20000118

RESUMO

The great significance of glutathione as a redox regulator and the reducing carrier has been established. There is a clear necessity for subdivision of an independent mitochondrial glutathione subsystem. The data on a specificity of glutathione metabolism in different organs are accumulated. The significance of glutathione system for inflammation and immunity has been proved. The investigations of glutathione system for elucidation of pathogenesis of diseases and its diagnostics are used in medicine.


Assuntos
Glutationa/imunologia , Glutationa/fisiologia , Imunidade/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Animais , Glutarredoxinas/fisiologia , Glutationa Redutase/genética , Glutationa Redutase/fisiologia , Humanos , Mitocôndrias/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/fisiologia , gama-Glutamiltransferase/fisiologia
15.
Sheng Wu Gong Cheng Xue Bao ; 23(5): 770-5, 2007 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-18051850

RESUMO

The physiological roles of the glutathione(GSH)/glutathione peroxidase(GPx) system in protecting microbial cells against oxidative stress were reviewed. In eukaryotic model microbe Saccharomyces cerevisiae,this system is obligatory in maintaining the redox balance and defending the oxidative stress. However, the GSH/GPx system only conditionally exists in prokaryotes. Namely,for those prokaryote bacteria containing glutathione reductase and GPx, e.g. Haemophilus influenzae and Lactococcus lactis, by taking up GSH, they might develop a conditional GSH-dependent GPx reduction system, which conferred cells a stronger resistance against oxidative challenge.


Assuntos
Glutationa Peroxidase/fisiologia , Glutationa/fisiologia , Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/fisiologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/fisiologia , Haemophilus influenzae/fisiologia , Lactococcus lactis/fisiologia , Saccharomyces cerevisiae/enzimologia
16.
Appl Environ Microbiol ; 73(14): 4469-76, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17496130

RESUMO

The effect of the glutathione reductase (GshR) activity of Lactobacillus sanfranciscensis DSM20451(T) on the thiol levels in fermented sourdoughs was determined, and the oxygen tolerance of the strain was also determined. The gshR gene coding for a putative GshR was sequenced and inactivated by single-crossover integration to yield strain L. sanfranciscensis DSM20451(T)DeltagshR. The gene disruption was verified by sequencing the truncated gshR and surrounding regions on the chromosome. The gshR activity of L. sanfranciscensis DSM20451(T)DeltagshR was strongly reduced compared to that of the wild-type strain, demonstrating that gshR indeed encodes an active GshR enzyme. The thiol levels in wheat doughs fermented with L. sanfranciscensis DSM20451 increased from 9 microM to 10.5 microM sulfhydryl/g of dough during a 24-h sourdough fermentation, but in sourdoughs fermented with L. sanfranciscensis DSM20451(T)DeltagshR and in chemically acidified doughs, the thiol levels decreased to 6.5 to 6.8 microM sulfhydryl/g of dough. Remarkably, the GshR-negative strains Lactobacillus pontis LTH2587 and Lactobacillus reuteri BR11 exerted effects on thiol levels in dough comparable to those of L. sanfranciscensis. In addition to the effect on thiol levels in sourdough, the loss of GshR activity in L. sanfranciscensis DSM20451(T)DeltagshR resulted in a loss of oxygen tolerance. The gshR mutant strain exhibited a strongly decreased aerobic growth rate on modified MRS medium compared to either the growth rate under anaerobic conditions or that of the wild-type strain, and aerobic growth was restored by the addition of cysteine. Moreover, the gshR mutant strain was more sensitive to the superoxide-generating agent paraquat.


Assuntos
Farinha/microbiologia , Glutationa Redutase/genética , Glutationa Redutase/fisiologia , Lactobacillus/enzimologia , Lactobacillus/fisiologia , Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Triticum , Aerobiose , Anaerobiose , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Transporte Biológico , Cisteína/metabolismo , Cistina/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Fermentação , Farinha/análise , Lactobacillus/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutagênese Insercional , Oxigênio/farmacologia , Paraquat/farmacologia , Análise de Sequência de DNA , Triticum/metabolismo
17.
Plant Physiol ; 143(3): 1282-92, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17277089

RESUMO

Nitric oxide and S-nitrosothiols (SNOs) are widespread signaling molecules that regulate immunity in animals and plants. Levels of SNOs in vivo are controlled by nitric oxide synthesis (which in plants is achieved by different routes) and by S-nitrosoglutathione turnover, which is mainly performed by the S-nitrosoglutathione reductase (GSNOR). GSNOR is encoded by a single-copy gene in Arabidopsis (Arabidopsis thaliana; Martínez et al., 1996; Sakamoto et al., 2002). We report here that transgenic plants with decreased amounts of GSNOR (using antisense strategy) show enhanced basal resistance against Peronospora parasitica Noco2 (oomycete), which correlates with higher levels of intracellular SNOs and constitutive activation of the pathogenesis-related gene, PR-1. Moreover, systemic acquired resistance is impaired in plants overexpressing GSNOR and enhanced in the antisense plants, and this correlates with changes in the SNO content both in local and systemic leaves. We also show that GSNOR is localized in the phloem and, thus, could regulate systemic acquired resistance signal transport through the vascular system. Our data corroborate the data from other authors that GSNOR controls SNO in vivo levels, and shows that SNO content positively influences plant basal resistance and resistance-gene-mediated resistance as well. These data highlight GSNOR as an important and widely utilized component of resistance protein signaling networks conserved in animals and plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Glutationa Redutase/fisiologia , Peronospora/fisiologia , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Glutationa Redutase/análise , Glutationa Redutase/genética , Imunidade Inata/genética , Floema/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , S-Nitrosotióis/metabolismo , Transdução de Sinais
18.
Arch. argent. dermatol ; 53(4): 147-157, jul.-ago. 2003. ilus
Artigo em Espanhol | LILACS | ID: lil-383793

RESUMO

Las formulaciones disponibles actualmente para uso dermatológico, basadas en sustancias antioxidantes tales como vitaminas C y E, entre otras, abundan con promesas de revertir el envejecimiento cutáneo. En el presente trabajo se realiza una revisión de los sistemas antioxidantes cutáneos, de la relación entre envejecimiento y daño oxidativo, así como de la evidencia disponible en cuanto al tratamiento con antioxidantes. La intención de este artículo es que el dermatólogo comprenda las bases fisiológicas de acción de los antioxidantes, para poder juzgar su utilidad con una mirada crítica


Assuntos
Humanos , Animais , Ácido Ascórbico/uso terapêutico , Antioxidantes , Espécies Reativas de Oxigênio , Pele , Envelhecimento da Pele , Raios Ultravioleta , Vitamina E , Ácido Ascórbico/farmacologia , Ácido Ascórbico/fisiologia , Administração Tópica , Antioxidantes , beta Caroteno , Catalase , Ensaios Clínicos como Assunto , Cosméticos , Fenômenos Fisiológicos da Pele , Glutationa Peroxidase/efeitos da radiação , Glutationa Peroxidase/fisiologia , Glutationa Redutase/efeitos da radiação , Glutationa Redutase/fisiologia , Glutationa Transferase/efeitos da radiação , Glutationa Transferase/fisiologia , Interleucinas , Ozônio , Peroxidase , Pele , Luz Solar , Superóxido Dismutase/efeitos da radiação , Superóxido Dismutase/fisiologia , Ubiquinona , Vitamina E
19.
Arch. argent. dermatol ; 53(4): 147-157, jul.-ago. 2003. ilus
Artigo em Espanhol | BINACIS | ID: bin-4186

RESUMO

Las formulaciones disponibles actualmente para uso dermatológico, basadas en sustancias antioxidantes tales como vitaminas C y E, entre otras, abundan con promesas de revertir el envejecimiento cutáneo. En el presente trabajo se realiza una revisión de los sistemas antioxidantes cutáneos, de la relación entre envejecimiento y daño oxidativo, así como de la evidencia disponible en cuanto al tratamiento con antioxidantes. La intención de este artículo es que el dermatólogo comprenda las bases fisiológicas de acción de los antioxidantes, para poder juzgar su utilidad con una mirada crítica (AU)


Assuntos
Humanos , Animais , Envelhecimento da Pele , Antioxidantes/fisiologia , Ácido Ascórbico/uso terapêutico , Vitamina E/uso terapêutico , Pele/efeitos da radiação , Espécies Reativas de Oxigênio , Raios Ultravioleta/efeitos adversos , Antioxidantes/uso terapêutico , Antioxidantes/efeitos da radiação , Ácido Ascórbico/farmacologia , Ácido Ascórbico/fisiologia , Vitamina E/farmacologia , Vitamina E/fisiologia , Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele , Superóxido Dismutase/fisiologia , Superóxido Dismutase/efeitos da radiação , Catalase/fisiologia , Catalase/efeitos da radiação , Peroxidase/fisiologia , Peroxidase/efeitos da radiação , Glutationa Peroxidase/fisiologia , Glutationa Peroxidase/efeitos da radiação , Glutationa Redutase/fisiologia , Glutationa Redutase/efeitos da radiação , Glutationa Transferase/fisiologia , Glutationa Transferase/efeitos da radiação , beta Caroteno/fisiologia , beta Caroteno/efeitos da radiação , Ubiquinona/fisiologia , Ubiquinona/efeitos da radiação , Ozônio/efeitos adversos , Administração Tópica , Cosméticos , Ensaios Clínicos como Assunto , Interleucinas/efeitos da radiação , Luz Solar/efeitos adversos
20.
Nitric Oxide ; 9(3): 172-81, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14732341

RESUMO

Intracellular sulfhydryls, both protein and non-protein, are potential targets of nitric oxide-related species. S-Nitrosation of proteins can occur in vivo and can affect their activity. Metabolic pathways that regulate protein S-nitrosation are therefore likely to be biologically important. We now report that formaldehyde dehydrogenase, an enzyme that decomposes S-nitrosoglutathione, can indirectly regulate the level of cellular protein S-nitrosation. Nitrogen oxide donors induced high levels of protein S-nitrosation in HeLa cells and lower levels in Mutatect fibrosarcoma cells, as determined by Saville-Griess assay and Western-dot-blot analysis. Depletion of glutathione by treatment with buthionine sulfoximine markedly increased protein S-nitrosation in both cell lines. Glutathione depletion also increased cytokine-induced S-nitrosation in brain endothelial cells. Formaldehyde dehydrogenase activity was 2-fold higher in Mutatect than in HeLa cells. We downregulated formaldehyde dehydrogenase activity in Mutatect cells by stably expressing antisense RNA and short-interfering RNA. In these cells, both protein S-nitrosation and S-nitrosoglutathione levels were significantly enhanced after exposure to nitrogen oxide donors as compared to parental cells. Overall, a strong inverse correlation between total S-nitrosothiols and formaldehyde dehydrogenase activity was seen. Inhibition of glutathione reductase, the enzyme that converts oxidized to reduced glutathione, by dehydroepiandrosterone similarly increased protein S-nitrosation and S-nitrosoglutathione levels in both cell lines. Our results provide the first evidence that formaldehyde dehydrogenase-dependent decomposition of S-nitrosoglutathione plays a role in protecting against nitrogen oxide-mediated protein S-nitrosation. We propose that formaldehyde dehydrogenase and glutathione reductase participate in a glutathione-dependent metabolic cycle that decreases protein S-nitrosation following exposure of cells to nitric oxide.


Assuntos
Acetilcisteína/análogos & derivados , Aldeído Oxirredutases/fisiologia , Cisteína/análogos & derivados , Cisteína/farmacologia , Óxido Nítrico/metabolismo , Proteínas/metabolismo , S-Nitrosoglutationa/farmacologia , S-Nitrosotióis/metabolismo , S-Nitrosotióis/farmacologia , Acetilcisteína/farmacologia , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/genética , Animais , Butionina Sulfoximina/farmacologia , Células Cultivadas , Desidroepiandrosterona/farmacologia , Glutationa/metabolismo , Glutationa Redutase/fisiologia , Células HeLa , Humanos , Camundongos , Óxido Nítrico/fisiologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Nitrosação/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , S-Nitrosotióis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...